Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Can J Infect Dis Med Microbiol ; 2024: 5548434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698837

RESUMO

Infections caused by antibiotic-resistant bacteria represent a serious threat to global public health. Recently, due to its increased resistance to carbapenems and ß-lactams, Klebsiella pneumoniae has become one of the main causes of septicemia, pneumonia, and urinary tract infections. It is crucial to take immediate action and implement effective measures to prevent further spread of this issue. This study aims to report the prevalence and antibiotic resistance rates of K. pneumoniae strains isolated from clinical specimens from 2015 to 2020 at the University Hospital of Salerno, Italy. More than 3,800 isolates were collected from urine cultures, blood cultures, respiratory samples, and others. K. pneumoniae isolates showed broad resistance to penicillin and cephalosporins, and increased susceptibility to fosfomycin and gentamicin. Extended spectrum beta-lactamase (ESBL) isolates accounted for 20-22%. A high percentage of strains tested were resistant to carbapenems, with an average of 40% to meropenem and 44% to ertapenem. The production of ESBLs and resistance to carbapenems is one of the major public health problems. Constant monitoring of drug-resistant isolates is crucial for developing practical approaches in implementing antimicrobial therapy and reducing the spread of K. pneumoniae in nosocomial environments.

2.
Antibiotics (Basel) ; 13(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38666999

RESUMO

The spread of antibiotic resistance represents a serious worldwide public health issue, underscoring the importance of epidemiology research in determining antimicrobial strategies. The purpose of this research was to investigate antibiotic resistance in Serratia marcescens isolates from clinical samples over seven years at the University Hospital "San Giovanni di Dio e Ruggi d'Aragona" in Salerno, Italy. S. marcescens is an important opportunistic pathogen associated with a wide spectrum of clinical diseases, including pneumonia, keratitis, meningitis, and urinary tract and wound infections. Outbreaks of nosocomial infections by S. marcescens strains have been documented in high-risk settings, mainly affecting immunocompromised patients and newborns. The primary objective of this study is to assess the rates of antibiotic resistance over the years to deal with a future emergency which includes the failure of various therapies due to antibiotic resistance. During the investigation, a total of 396 species of S. marcescens were isolated from various clinical samples, mainly from broncho-aspirates and sputum (31.6%) and blood cultures (21.5%). Antibiotics that showed the greatest susceptibility included ceftazidime/avibactam, amikacin, trimethoprim/sulfamethoxazole, and selected members of the cephalosporin class. However, a disconcerting trend of increasing rates of carbapenem resistance was outlined over the observation period. The absence of effective countermeasures, combined with growing antibiotic resistance that negates the effectiveness of multiple antibiotics, highlights the potential for S. marcescens infections to trigger serious clinical complications and increased mortality rates. The surveillance of Serratia marcescens infections constitutes a pivotal element in refining empiric therapy to mitigate the dissemination of antimicrobial resistance.

3.
Heliyon ; 10(8): e29017, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644830

RESUMO

The programmed cell death pathways of apoptosis are important in mammalian cellular protection from infections. The activation of these pathways depends on the presence of membrane receptors that bind bacterial components to activate the transduction mechanism. In addition to bacteria, these mechanisms can be activated by outer membrane vesicles (OMVs). OMVs are spherical vesicles of 20-250 nm diameter, constitutively released by Gram-negative bacteria. They contain several bacterial determinants including proteins, DNA/RNA and proteins, that activate different cellular processes in host cells. This study focused on Klebsiella pneumoniae-OMVs in activating death mechanisms in human bronchial epithelial cells (BEAS-2B). Characterization of purified OMVs was achieved by scanning electron microscopy, nanoparticle tracking analysis and protein profiling. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay while apoptotic induction was measured by flow cytometry and confirmed by western blotting. The OMVs produced showed a spherical morphology, with a diameter of 137.2 ± 41 nm and a vesicular density of 7.8 × 109 particles/mL Exposure of cell monolayers to 50 µg of K. pneumoniae-OMV for 14 h resulted in approximately 25 % cytotoxicity and 41.15-41.14 % of cells undergoing early and late apoptosis. Fluorescence microscopy revealed reduced cellular density, the presence of apoptotic bodies, chromatin condensation, and nuclear membrane blebbing in residual cells. Activation of caspases -3 and -9 and dysregulation of BAX, BIM and Bcl-xL indicated the activation of mitochondria-dependent apoptosis. Furthermore, a decrease in the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase involved endoplasmic reticulum stress with the potential formation of reactive oxygen species. These findings provide evidence for the role of OMVs in apoptosis and involvement in the pathogenesis of K. pneumoniae infections.

4.
Nat Prod Res ; : 1-14, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557224

RESUMO

The discovery of natural molecules with antimicrobial properties has become an urgent need for the global treatment of bacterium and virus infections. Cistus incanus, a Mediterranean shrub species, represents a valuable source of phytochemicals with an interesting wide-spectrum antimicrobial potential. In this study, we analysed the spectrum of molecules composing a commercial hydroalcoholic extract of C. incanus finding ellagitannins as the most abundant. The effect of the extract and its main constituents (gallic acid, ellagic acid and punicalin) was assessed as co-treatment during viral (HSV-1, HCoV-229E, SARS-CoV-2) and bacterial infection (Staphylococcus aureus and Escherichia coli) of cells and as pre-treatment before virus infections. The results indicated a remarkable antiviral activity of punicalin against SARS-CoV-2 by pre-treating both the viral and the host cells, and a major sensitivity of S. aureus to the C. incanus extract compared to E. coli. The present study highlights broad antimicrobial potential of C. incanus extract.

5.
Microorganisms ; 12(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674764

RESUMO

The spread of antibiotic-resistant bacteria and the rise of emerging and re-emerging viruses in recent years constitute significant public health problems. Therefore, it is necessary to develop new antimicrobial strategies to overcome these challenges. Herein, we describe an innovative method to synthesize ligand-free silver nanoparticles by Pulsed Laser Ablation in Liquid (PLAL-AgNPs). Thus produced, nanoparticles were characterized by total X-ray fluorescence, zeta potential analysis, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate the nanoparticles' cytotoxicity. Their potential was evaluated against the enveloped herpes simplex virus type 1 (HSV-1) and the naked poliovirus type 1 (PV-1) by plaque reduction assays and confirmed by real-time PCR and fluorescence microscopy, showing that nanoparticles interfered with the early stage of infection. Their action was also examined against different bacteria. We observed that the PLAL-AgNPs exerted a strong effect against both methicillin-resistant Staphylococcus aureus (S. aureus MRSA) and Escherichia coli (E. coli) producing extended-spectrum ß-lactamase (ESBL). In detail, the PLAL-AgNPs exhibited a bacteriostatic action against S. aureus and a bactericidal activity against E. coli. Finally, we proved that the PLAL-AgNPs were able to inhibit/degrade the biofilm of S. aureus and E. coli.

6.
Sci Data ; 11(1): 220, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374088

RESUMO

Tuberculosis (TB) is one of the deadliest infectious disorders in the world. To effectively TB manage, an essential step is to gain insight into the lineage of Mycobacterium tuberculosis (MTB) and the distribution of drug resistance. Although the Campania region is declared a cluster area for the infection, to contribute to the effort to understand TB evolution and transmission, still poorly known, we have generated a dataset of 159 genomes of MTB strains, from Campania region collected during 2018-2021, obtained from the analysis of whole genome sequence. The results show that the most frequent MTB lineage is the 4 according for 129 strains (81.11%). Regarding drug resistance, 139 strains (87.4%) were classified as multi susceptible, while the remaining 20 (12.58%) showed drug resistance. Among the drug-resistance strains, 8 were isoniazid-resistant MTB, 4 multidrug-resistant MTB, while only one was classified as pre-extensively drug-resistant MTB. This dataset expands the existing available knowledge on drug resistance and evolution of MTB, contributing to further TB-related genomics studies to improve the management of this disease.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
7.
Cancers (Basel) ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067244

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common oral cavity malignancy associated with multiple risk factors. In the last 14 years, oral dysbiosis has attracted the scientific community's attention as a potential oncogenic factor, in parallel with the development of omics technologies that have revolutionized microbiological research. The present umbrella review aimed to investigate the oral microbiological content (bacilli, viruses, and fungi) of tissue and saliva samples from adult (>18 years) patients with OSCC. The secondary objective was to compare the oral microbiome of OSCC subjects with non-OSCC subjects. The study protocol was under the PRISMA statement and registered on PROSPERO (CRD42023448153). Data from 32 systematic reviews were extracted, qualitatively summarized, and analyzed using AMSTAR-2. An increase in oral bacteria of the phylum Fusobacteria, Proteobacteria, and Bacteroidetes and a decrease in Firmicutes and Actinobacteria were observed in OSCC patients. The increased bacterial genera were periodontopathogens. The most common viruses were EBV and HPV, especially the high-risk genotypes. Candida was the most studied oral fungus and was always increased in OSCC subjects. Further studies should investigate the possible carcinogenic mechanisms of oral microorganisms found increased in tissue samples and saliva from adult subjects with OSCC.

8.
Cancers (Basel) ; 15(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067286

RESUMO

Cervical cancer ranks as the fourth most prevalent cancer among women globally, with approximately 600,000 new cases being diagnosed each year. The principal driver of cervical cancer is the human papillomavirus (HPV), where viral oncoproteins E6 and E7 undertake the role of driving its carcinogenic potential. Despite extensive investigative efforts, numerous facets concerning HPV infection, replication, and pathogenesis remain shrouded in uncertainty. The virus operates through a variety of epigenetic mechanisms, and the epigenetic signature of HPV-related tumors is a major bottleneck in our understanding of the disease. Recent investigations have unveiled the capacity of viral oncoproteins to influence epigenetic changes within HPV-related tumors, and conversely, these tumors exert an influence on the surrounding epigenetic landscape. Given the escalating occurrence of HPV-triggered tumors and the deficiency of efficacious treatments, substantial challenges emerge. A promising avenue to address this challenge lies in epigenetic modulators. This review aggregates and dissects potential epigenetic modulators capable of combatting HPV-associated infections and diseases. By delving into these modulators, novel avenues for therapeutic interventions against HPV-linked cancers have come to the fore.

9.
Antibiotics (Basel) ; 12(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38136724

RESUMO

Root canal treatment represents a significant challenge as current cleaning and disinfection methodologies fail to remove persistent bacterial biofilms within the intricate anatomical structures. Recently, the field of nanotechnology has emerged as a promising frontier with numerous biomedical applications. Among the most notable contributions of nanotechnology are nanoparticles, which possess antimicrobial, antifungal, and antiviral properties. Nanoparticles cause the destructuring of bacterial walls, increasing the permeability of the cell membrane, stimulating the generation of reactive oxygen species, and interrupting the replication of deoxyribonucleic acid through the controlled release of ions. Thus, they could revolutionize endodontics, obtaining superior results and guaranteeing a promising short- and long-term prognosis. Therefore, chitosan, silver, graphene, poly(lactic) co-glycolic acid, bioactive glass, mesoporous calcium silicate, hydroxyapatite, zirconia, glucose oxidase magnetic, copper, and zinc oxide nanoparticles in endodontic therapy have been investigated in the present review. The diversified antimicrobial mechanisms of action, the numerous applications, and the high degree of clinical safety could encourage the scientific community to adopt nanoparticles as potential drugs for the treatment of endodontic diseases, overcoming the limitations related to antibiotic resistance and eradication of the biofilm.

10.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37796875

RESUMO

AIMS: Multidrug resistance is a worrying problem worldwide. The lack of readily available drugs to counter nosocomial infections requires the need for new interventional strategies. Drug repurposing represents a valid alternative to using commercial molecules as antimicrobial agents in a short time and with low costs. Contextually, the present study focused on the antibacterial potential of the ammonium salt N-nitroso-N-phenylhydroxylamine (Cupferron), evaluating the ability to inhibit microbial growth and influence the main virulence factors. METHODS AND RESULTS: Cupferron cytotoxicity was checked via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and hemolysis assays. The antimicrobial activity was assessed through the Kirby-Bauer disk diffusion test, broth microdilution method, and time-killing kinetics. Furthermore, the impact on different stages of the biofilm life cycle, catalase, swimming, and swarming motility was estimated via MTT and crystal violet (CV) assay, H2O2 sensitivity, and motility tests, respectively. Cupferron exhibited <15% cytotoxicity at 200 µg/mL concentration. The 90% bacterial growth inhibitory concentrations (MIC90) values recorded after 24 hours of exposure were 200 and 100 µg/mL for multidrug-resistant (MDR) and sensitive strains, respectively, exerting a bacteriostatic action. Cupferron-treated bacteria showed increased susceptibility to biofilm production, oxidative stress, and impaired bacterial motility in a dose-dependent manner. CONCLUSIONS: In the new antimicrobial compounds active research scenario, the results indicated that Cupferron could be an interesting candidate for tackling Escherichia coli infections.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Virulência , Peróxido de Hidrogênio , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Biofilmes
11.
Clin Exp Med ; 23(8): 4943-4953, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898572

RESUMO

SARS-CoV-2 and its variants cause CoronaVIrus Disease 19 (COVID-19), a pandemic disease. Hematological malignancies increase susceptibility to severe COVID-19 due to immunosuppression. Anti-SARS-CoV-2 neutralizing antibodies protect against severe COVID-19. This retrospective real-life study aimed to evaluate seropositivity and neutralizing antibody rates against SARS-CoV-2 and its Omicron BA.1 variant in hematological patients. A total of 106 patients with different hematologic malignancies, who have mostly received three or more vaccine doses (73%), were included in this study. Serum was collected between May and June 2022. The primary endpoint was anti-SARS-CoV-2 antibody response against ancestral (wild type; wt) and Omicron BA.1 virus, defined as a neutralizing antibody titer ≥ 1:10. Adequate neutralizing antibody response was observed in 75 (71%) and 87 (82%) of patients for wt and Omicron BA.1 variants, respectively.However, patients with B-cell lymphoproliferative disorders and/or those treated with anti-CD20 monoclonal antibodies in the prior 12 months showed a lower seropositivity rate compared to other patients against both Omicron BA.1 variant (73% vs 91%; P = 0.02) and wt virus (64% vs 78%; P = 0.16). Our real-life experience confirmed that full vaccination against SARS-CoV-2 induces adequate neutralizing antibody protection for both the wt virus and Omicron BA.1 variants, even in hematological frail patients. However, protective measures should be maintained in hematological patients, especially those with B-cell lymphoproliferative diseases treated with anti-CD20 monoclonal antibodies, because these subjects could have a reduced neutralizing antibody production.


Assuntos
COVID-19 , Neoplasias Hematológicas , Humanos , SARS-CoV-2 , Anticorpos Neutralizantes , COVID-19/prevenção & controle , Estudos Retrospectivos , Anticorpos Antivirais , Anticorpos Monoclonais
12.
Microorganisms ; 11(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764086

RESUMO

The emergence of multidrug-resistant strains requires the urgent discovery of new antibacterial drugs. In this context, an antibacterial screening of a subset of anthelmintic avermectins against gram-positive and gram-negative strains was performed. Selamectin completely inhibited bacterial growth at 6.3 µg/mL concentrations against reference gram-positive strains, while no antibacterial activity was found against gram-negative strains up to the highest concentration tested of 50 µg/mL. Given its relevance as a community and hospital pathogen, further studies have been performed on selamectin activity against Staphylococcus aureus (S. aureus), using clinical isolates with different antibiotic resistance profiles and a reference biofilm-producing strain. Antibacterial studies have been extensive on clinical S. aureus isolates with different antibiotic resistance profiles. Mean MIC90 values of 6.2 µg/mL were reported for all tested S. aureus strains, except for the macrolide-resistant isolate with constitutive macrolide-lincosamide-streptogramin B resistance phenotype (MIC90 9.9 µg/mL). Scanning Electron Microscopy (SEM) showed that selamectin exposure caused relevant cell surface alterations. A synergistic effect was observed between ampicillin and selamectin, dictated by an FIC value of 0.5 against methicillin-resistant strain. Drug administration at MIC concentration reduced the intracellular bacterial load by 81.3%. The effect on preformed biofilm was investigated via crystal violet and confocal laser scanning microscopy. Selamectin reduced the biofilm biomass in a dose-dependent manner with minimal biofilm eradication concentrations inducing a 50% eradication (MBEC50) at 5.89 µg/mL. The cytotoxic tests indicated that selamectin exhibited no relevant hemolytic and cytotoxic activity at active concentrations. These data suggest that selamectin may represent a timely and promising macrocyclic lactone for the treatment of S. aureus infections.

13.
Microorganisms ; 11(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37630478

RESUMO

Pseudomonas aeruginosa (PA) is a major Gram-negative opportunistic pathogen causing several serious acute and chronic infections in the nosocomial and community settings. PA eradication has become increasingly difficult due to its remarkable ability to evade antibiotics. Therefore, epidemiological studies are needed to limit the infection and aim for the correct treatment. The present retrospective study focused on PA presence among samples collected at the San Giovanni di Dio and Ruggi D'Aragona University Hospital in Salerno, Italy; its resistance profile and relative variations over the eight years were analyzed. Bacterial identification and antibiotic susceptibility tests were performed by VITEK® 2. In the 2015-2019 and 2020-2022 timeframes, respectively, 1739 and 1307 isolates of PA were obtained from respiratory samples, wound swabs, urine cultures, cultural swabs, blood, liquor, catheter cultures, vaginal swabs, and others. During 2015-2019, PA strains exhibited low resistance against amikacin (17.2%), gentamicin (25.2%), and cefepime (28.3%); moderate resistance against ceftazidime (34.4%), imipenem (34.6%), and piperacillin/tazobactam (37.7%); and high resistance against ciprofloxacin (42.4%) and levofloxacin (50.6%). Conversely, during the 2020-2022 era, PA showed 11.7, 21.1, 26.9, 32.6, 33.1, 38.7, and 39.8% resistance to amikacin, tobramycin, cefepime, imipenem, ceftazidime, ciprofloxacin, and piperacillin/tazobactam, respectively. An overall resistance-decreasing trend was observed for imipenem and gentamicin during 2015-2019. Instead, a significant increase in resistance was recorded for cefepime, ceftazidime, and imipenem in the second set of years investigated. Monitoring sentinel germs represents a key factor in optimizing empirical therapy to minimize the spread of antimicrobial resistance.

14.
Pharmaceutics ; 15(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631353

RESUMO

The continuous outbreak of drug-resistant bacterial and viral infections imposes the need to search for new drug candidates. Natural products from marine bacteria still inspire the design of pharmaceuticals. Indeed, marine bacteria have unique metabolic flexibility to inhabit each ecological niche, thus expanding their biosynthetic ability to assemble unprecedented molecules. The One-Strain-Many-Compounds approach and tandem mass spectrometry allowed the discovery of a Shewanella aquimarina strain as a source of novel imidazolium alkaloids via molecular networking. The alkaloid mixture was shown to exert bioactivities such as: (a) antibacterial activity against antibiotic-resistant Staphylococcus aureus clinical isolates at 100 µg/mL, (b) synergistic effects with tigecycline and linezolid, (c) restoration of MRSA sensitivity to fosfomycin, and (d) interference with the biofilm formation of S. aureus 6538 and MRSA. Moreover, the mixture showed antiviral activity against viruses with and without envelopes. Indeed, it inhibited the entry of coronavirus HcoV-229E and herpes simplex viruses into human cells and inactivated poliovirus PV-1 in post-infection assay at 200 µg/mL. Finally, at the same concentration, the fraction showed anthelminthic activity against Caenorhabditis elegans, causing 99% mortality after 48 h. The broad-spectrum activities of these compounds are partially due to their biosurfactant behavior and make them promising candidates for breaking down drug-resistant infectious diseases.

15.
Expert Opin Drug Discov ; 18(12): 1301-1311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614103

RESUMO

INTRODUCTION: Nirmatrelvir/ritonavir (Paxlovid®) represent an oral antiviral therapy approved for the treatment of COVID-19. Extensive in vitro and in vivo studies have reported the promising activity of nirmatrelvir/ritonavir against numerous emerging viruses. This combination consists of nirmatrelvir, a protease reversible inhibitor of coronavirus 3CLpro mainly metabolized by cytochrome P450 (CYP)3A4, and ritonavir, an inhibitor of the CYP3A isoforms that enhances the efficacy of nirmatrelvir by fixing its suboptimal pharmacokinetic properties. AREAS COVERED: This review comprehensively examines the efficacy of nirmatrelvir/ritonavir through rigorous analysis of in vitro and in vivo studies. Moreover, it thoroughly assesses its safety, tolerability, pharmacokinetics, and antiviral efficacy against SARS-COV-2 infection, based on the main pre-authorization randomized controlled trials. EXPERT OPINION: Nirmatrelvir/ritonavir has a good tolerability profile. Its administration during the early stages of mild-to-moderate COVID-19 holds potential benefits, as it can help prevent the onset of an aberrant immune response that could lead to pulmonary and extra-pulmonary complications. However, its drug - drug interactions can be a factor limiting its use, at least in populations on some chronic therapies, along with the risk of infection relapse after treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ritonavir/efeitos adversos , Tratamento Farmacológico da COVID-19 , Antivirais/efeitos adversos
16.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982566

RESUMO

The epidemiology of Salmonella Infantis is complex in terms of its distribution and transmission. The continuous collection and analysis of updated data on the prevalence and antimicrobic resistance are essential. The present work aimed to investigate the antimicrobial resistance and the correlation among S. Infantis isolates from different sources through the multiple-locus variable-number of tandem repeat (VNTR) analysis (MLVA). A total of 562 Salmonella strains isolated from 2018 to 2020 from poultry, humans, swine, water buffalo, mussels, cattle, and wild boar were serotyped, and 185 S. Infantis strains (32.92%) were identified. S. Infantis was commonly isolated in poultry and, to a lesser extent, in other sources. The isolates were tested against 12 antimicrobials, and a high prevalence of resistant strains was recorded. S. Infantis showed high resistance against fluoroquinolones, ampicillin, and tetracycline, which are commonly used in human and veterinary medicine. From all S. Infantis isolates, five VNTR loci were amplified. The use of MLVA was not sufficient to understand the complexity of the epidemiological relationships between S. Infantis strains. In conclusion, an alternative methodology to investigate genetic similarities and differences among S. Infantis strains is needed.


Assuntos
Antibacterianos , Anti-Infecciosos , Bovinos , Humanos , Animais , Suínos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Salmonella/genética , Anti-Infecciosos/farmacologia , Aves Domésticas , Genômica , Testes de Sensibilidade Microbiana
17.
Microorganisms ; 11(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838468

RESUMO

Due to the wide etiology of conjunctivitis, the expensive and time-consuming diagnosis requires new therapeutic strategies with broad-spectrum antimicrobial activity and nonselective mechanisms of action. In this context, eye drops could provide an alternative to conventional antimicrobial therapies. Here, we compare the antibacterial and antiviral activity of Oftasecur and Visuprime, commercially available ophthalmic solutions. Cytotoxicity assay was performed on Vero CCL-81 cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) test. Antibacterial efficacy was evaluated on Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae by disk diffusion, broth microdilution methods, and time-killing tests. Furthermore, the antiviral activity against HSV-1 was estimated by co-treatment, cell and viral pretreatment and post-treatment, via plaque reduction assay, fluorescence assessment (GFP-engineered HSV-1), and real-time PCR. After 24 h of exposure, Oftasecur and Visuprime showed a volume-inducing 50% of cytotoxicity of 125 and 15.8 µL, respectively Oftasecur and Visuprime induced 90% antibacterial activity in response to mean volume of 10.0 and 4.4 µL for Gram-positive and Gram-negative strains, respectively. Oftasecur exerted bactericidal action on both bacterial populations, while Visuprime was bacteriostatic on Gram-negative strains and slightly bactericidal on Gram-positive bacteria. A major impact on infectivity occurred by exposure of viral particles to the ophthalmic solutions. In detail, 50% of inhibition was verified by exposing the viral particles to 3.12 and 0.84 µL of Oftasecur and Visuprime, respectively, for 1 h. The reduction of the fluorescence and the expression of the viral genes confirmed the recorded antiviral activity. Due to their high antimicrobial efficiency, Oftasecur and Visuprime could represent a valid empirical strategy for the treatment of conjunctivitis.

18.
Pharmaceutics ; 15(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36840022

RESUMO

Staphylococcus aureus is a Gram-positive opportunistic human pathogen responsible for severe infections and thousands of deaths annually, mostly due to its multidrug-resistant (MDR) variants. The cell membrane has emerged as a promising new therapeutic target, and lipophilic molecules, such as biosurfactants, are currently being utilized. Herein, we evaluated the antimicrobial activity of a rhamnolipids mixture produced by the Antarctic marine bacterium Pseudomonas gessardii M15. We demonstrated that our mixture has bactericidal activity in the range of 12.5-50 µg/mL against a panel of clinical MDR isolates of S. aureus, and that the mixture eradicated the bacterial population in 30 min at MIC value, and in 5 min after doubling the concentration. We also tested abilities of RLs to interfere with biofilm at different stages and determined that RLs can penetrate biofilm and kill the bacteria at sub-MICs values. The mixture was then used to functionalize a cotton swab to evaluate the prevention of S. aureus proliferation. We showed that by using 8 µg of rhamnolipids per swab, the entire bacterial load is eradicated, and just 0.5 µg is sufficient to reduce the growth by 99.99%. Our results strongly indicate the possibility of using this mixture as an additive for wound dressings for chronic wounds.

19.
Microorganisms ; 11(1)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36677513

RESUMO

Acquired Immunodeficiency Syndrome (AIDS) is a human viral infectious disease caused by the positive-sense single-stranded (ss) RNA Human Immunodeficiency Virus (HIV) (Retroviridae family, Ortervirales order). HIV-1 can be distinguished into various worldwide spread groups and subtypes. HIV-2 also causes human immunodeficiency, which develops slowly and tends to be less aggressive. HIV-2 only partially homologates to HIV-1 despite the similar derivation. Antiretroviral therapy (ART) is the treatment approved to control HIV infection, based on multiple antiretroviral drugs that belong to different classes: (i) NNRTIs, (ii) NRTIs, (iii) PIs, (iv) INSTIs, and (v) entry inhibitors. These drugs, acting on different stages of the HIV life cycle, decrease the patient's total burden of HIV, maintain the function of the immune system, and prevent opportunistic infections. The appearance of several strains resistant to these drugs, however, represents a problem today that needs to be addressed as best as we can. New outbreaks of strains show a widespread geographic distribution and a highly variable mortality rate, even affecting treated patients significantly. Therefore, novel treatment approaches should be explored. The present review discusses updated information on HIV-1- and HIV-2-resistant strains, including details on different mutations responsible for drug resistance.

20.
Toxics ; 10(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36548601

RESUMO

BACKGROUND: The disinfection process represents an important activity closely linked to the removal of micro-organisms in common processing systems. Traditional disinfectants are often not sufficient to avoid the spread of food pathogens; therefore, innovative strategies for decontamination are crucial to countering microbial transmission. This study aims to assess the antimicrobial efficiency of tetrapotassium iminodisuccinic acid salt (IDSK) against the most common pathogens present on surfaces, especially in food-borne environments. METHODS: IDSK was synthesized from maleic anhydride and characterized through nuclear magnetic resonance (NMR) spectroscopy (both 1H-NMR and 13C-NMR), thermogravimetric analysis (TGA) and Fourier Transform Infrared (FTIR) spectroscopy. The antibacterial activity was performed via the broth microdilution method and time-killing assays against Escherichia coli, Staphylococcus aureus, Salmonella enterica, Enterococcus faecalis and Pseudomonas aeruginosa (IDSK concentration range: 0.5-0.002 M). The biofilm biomass eradicating activity was assessed via a crystal violet (CV) assay. RESULTS: The minimum inhibitory concentration (MIC) of IDSK was 0.25 M for all tested strains, exerting bacteriostatic action. IDSK also reduced biofilm biomass in a dose-dependent manner, reaching rates of about 50% eradication at a dose of 0.25 M. The advantages of using this innovative compound are not limited to disinfecting efficiency but also include its high biodegradability and its sustainable synthesis. CONCLUSIONS: IDSK could represent an innovative and advantageous disinfectant for food processing and workers' activities, leading to a better quality of food and safer working conditions for the operators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA